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Nonequivalence of phonon modes in the sine-Gordon equation

Niurka R. Quinterd
Grupo de Fsica No Lineal, Departamento dedica Aplicada I, Universidad de Sevilla, Ave. Reina Mercedes s/n, 41012, Sevilla, Spain

Panayotis G. Kevrekidls
Theoretical Division and Center for NonLinear Studies, MS-B258, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
and Department of Mathematics and Statistics, University of Massachusetts, Lederle Graduate Research Tower, Amherst,
Massachusetts 01003-4515
(Received 29 May 2001; published 22 October 2001

We study the resonances in the sine-Gordon equation driven by an ac force using a linear perturbation
theory. We show that resonances take place when the driving frequeieyequal to half of the phonon
modes’ frequencies as has been shown numerically in our earlier[NofR. Quintero, A. Sanchez, and F. G.
Mertens, Phys. Rev. B2, R60(2000], however, we find that the ac force is able to excite not all the phonon
modes, but rather only the odd phondns., the ones with odd eigenfunctigns
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[. INTRODUCTION driven by an ac force and the driving frequency is close to
being half of the frequency of the odd(in the last formula
The 1+1 dimensional sine-GordofsG) equation[u,, phonon eigenfrequencies, these phonon modes are excited
—u,=sinu] appears in a wide variety of physical systems,while, unexpectedly, the same was not true for the even
including charge-density-wave materials, magnetic flux ineigenmodes. From this picture the main question that arises
Josephson lines, splay waves in membranes, Bloch wall mds why are the rest of the phonon modesenn) not excited
tion in magnetic crystals, and models of elementary particledy the ac force?
among otherd2]. In most realistic physical contexts this  The aim of this work is to analyze these resonance phe-
completely integrable partial differential equation appearsiomena by using a linear perturbation theory. We will show
under the effect of damping and @8] or ac[1,4] driving. why the ac driving is responsible for the “preferrential” ex-
In this work we focus on the resonances of the linearizacitation of only somei.e., the “odd”) of the phonon modes.
tion spectrum of the sG equation under the effect of variable
frequency ac driving in the presence of damping. In order to Il. PERTURBATION THEORY
study the resonances of the sG system perturbed by an ac
force, we investigate the approximate solution of the follow- \We assume that the solution of E4) has the form
ing equation by using a linear perturbation theory

+ o0
. X,t)= x—Xt+j dkA(t) f(x—X(1)), (2
¢tt_¢xx+5|n(¢):_18¢t+f(t)v (l) ¢( ) ¢O( ( )) 700 Ak( ) k( ( )) ( )
whereg ande are small parameter§(t) = e sin(dt+ ) isan  wherey(x) is the exact static kink solution of the sG equa-
ac force with an amplitude, a frequencys, and phase%,.  tion, andf,(x) are the eigenfunctions of the phonon modes
Here we also include the effect of dissipation through thewith the corresponding frequencies,
damping coefficien{B. For this model it has been numeri-

cally observed in Ref[1] that the energy of the system gkx
grows when the driving frequency is nearly half the fre- fr(x)= [k+itanh(x)], o=V1+k? (3)
quency of the extendephonor) eigenmodes pertaining to V2mwy

the continuous spectrurfdue to resonance effeg¢tdn Ref. ) )
[1], following Ref. [5], the present authors used which along with the zero frequencyw{=0) Goldstone

the dispersion relationw,~ 1+ (2n#/L)2, (where n modef(X) = d¢pg/Ix=2/coshk) form an orthonormal basis
=12,...N—1; N=L/Ax, Ax is the lattice spacing set(for more details see, e.g., R¢6]). The unknown, time
andL is the length of the finite computational dompgior dependent functionX(t) andAy(t)=[a(t) +ib(t)]/2 rep-

the frequencies of the phonon modes of B, however, we resent the position of the center of the kink and the amplitude
will show that for the model of Eq1) considered with free ©f Phonon modes, respectively. If we impose free boundary

boundary conditions, the dispersion relation should regd conditions(FBC) on Eq. (1) at = and consider the static
~JI+[(n—D)m/L%, (n=12,...) when n/L<1. It kink centered aX(0)=0, d¢(x,t)/dx in Eq.(2) should van-

was thus observed in Refl] that when the sG system is ish at =L/2—*o, X(0)=0, A(0)=0, and A(0)=0.
Taking finite but large enough we find that the FBC hold if
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FIG. 1. We plot the spatial profile of the first od&{) and even
(F,) eigenfunctions by solid and dashed lines, respectively.

where the function&,(x) andG,(x) are the real and imagi-
nary part off  (x), respectively. Notice thak(x) is an even
function, whereasG,(x) is an odd one(see in Fig. 1 the
functionsG, andF,), and soa,(t) andb(t) in Eq.(2) are
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| kk,):£J dﬁiﬁf f* _ (k2_k,2)
1(kk)=5 96 KK ENE
4wka)k/S|n -
2
’ 1 fk * ! ’
I,(k ,k)Ei—J do— 21 (0)=ka(k' — k) +11(k k'),

10 ofy L
ke =1 [ d0Z20 (O O1130)

where A=k—k’. Notice that in Egqs(5) and (6) we have

neglected the terms proportional X3a, andX?by.
To solve the coupled nonlinear evolution equatigbs

and(6) with the FBC(4), we use the fact that(t) andA(t)
vanish whene=0 and so, ife is a small parameter, we

expand these two functions in powers ef i.e., X(t)
=37 €X(t) and A(t)==_, A (1) with the initial
conditionsX;(0)=0 andA{’(0)=0. Inserting these two se-

related with the even and odd eigenfunctions of the phonorjes into Eqs(5) (6), and(4) we obtain a hierarchy of linear

modes, respectively.
In order to obtain the equations fof(t) and A.(t), we

insert Eq.(2) into Eq. (1) and then project the obtained ex-
pression on the basis of eigenfunctions of the linearization

operator {f,,f,} using the orthogonality relations. After

equations for the coefficients of these series. For the arder
and €? these equations read

.. : sin( St+ 6,
Xl+lgxlz_w

straightforward calculations we obtain the evolution equa-

tions for the kink's center,

f
LoX=— qM—(t) —f dK[ (X+ BX)by+ Xb, JN1 (k)
~ ko dki(abe, +agbla(kkp), (5

where £ ;=% t*+ Balgt+ w? (j=b,k) is the second or-
der linear differential operatoM =8 is the kink’s mass,
andq=Jdéf,= 2 is the topological charge of the sG kink
(here and throughout the paper we omit the limit® in the
integralg, and for the phonon amplitudes

L A= (1N, (K) — XN (k)

. laf(t)
—|fdk[ M,

A — )'(Ak,}lz(k’,k)

i
b5 ] d [ doAgAL ko, ©
with
l‘?fk \/; Wy
Ni(k)=— fd9fb EW,
COoS 7

. T

Nz(k)Ef dofy=— \/;W,
sinf| —-
2 )

Mg
in(5t+ 59)
(1) pa(D) (1)__\/Em—0
al+ palt + wia > -..(k”)’
wy Sinh —-

b{M+ Bb{M + w2b{V =sin( st + 50)f doG,=0 (7)

and
Xy+ BX,=0,
0+ B+ ufaf?=0,

. . . a Wy

b+ BB+ wib{P = — X] \/;ﬁ

cosh —-
g sin(dt+ &q)

ro(1) ’
e Jdk a®1,(k’ k)

+>'<1f dk’alP1,(k' k)

fdklf dkealai )l 5(ky Kz ),

®

where{a{!) ,b{"} and{a{®,b{*)} also satisfy Eq(4). Since
our purpose is to explain from an analytical point of view the
resonances observed numerically in R&f.in the undamped
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case, we continue the analysis of E¢8. and (8) setting 8
=0. In this case the solution of E¢7) reads

X,=~ i 5L00s at+ )~ cos )],

a{t=c; sinwt) + ¢, Cog wt) + 1y SIN( St + &),

ory cog J,
l:_k—E{O)' CZ:—rksin(ﬁo),
Wy
\2mr
e 9

20 (8%— wd)sinh(km/2)

andb{? is zero. Notice that whe® is close tow, the ex-
pansion forA, is not valid sincea(kl) goes to infinity, so
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— Mioé[cos{aH— 8p) —C€0g &p) |

(kZ_ er)
4wkwk, Sinf( 7TA/2)

X

ka{D+ f dk’alt

1
+5 f dk, f dkza(k?a(k?b(kl,kz,k). (12)

It can be seen from Eq12) that when we drive the original
system with an ac force of frequeney the odd phonons
“feel” an external force of frequency & so the resonances
arise whens~ w,/2 [8]. Analogously witha{", if we take
into account the FBC, we obtain tha§®) also satisfies

b{®{cog kL/2)[ k?+ cosh 2(L/2)]—k sin(kL/2)tank(L/2)}

when é~ wy, the ac force excites the even modes, giving 0 13
rise to the resonances in the system. Also, notice that, at leaghose solution is given by
in the first order correction, there are no resonanceg at
~wy/2. 2(m=-1)=
It is interesting to note that not all phonon modes are m= T (14)

solutions of the starting problerfl) with FBC (4). Indeed,
by inserting this solution in Eq4) we obtain

a(M[sin(kL/2)[k?+ cosh 2(L/2)]+k cog kL/2)tanh(L/2)]
=0. (10)

This equation yields the allowed values of the wave number
k=k, (m=1,2,...N), so in the above equations we

should change the integral ovieto a sum over thé&\ wave
numbers. If we considédr large enough in Eq10), we find
that if

_(em-1)m

=" (1

Eqg. (10) is approximately equal to zero for the first modes,

however, for the largest values bt k,, a‘kl) should vanish
[7]. Coming back to the evolution equatio(®, and substi-
tuting the solutiong9) in the right-hand side of8), we ob-

tain thatX,=0, a{®=0, and the equation fds(>) reads

. V2w q°
b+ wib{?=— o 22l 2T C04200)
4 COSVE 7) 0

+cog26t+28,) — 4 cog 5y)coq St+ 5p) |

kCl Sin(wkt)

q .
- M—OSIH((S'[-F )

+kc, cog wyt) +Kkry sin(St+ &p)

, (kZ_er)
+f dk a(kl,) ;
4(J)k0)kr S|nr(7TA/2)

for small integerm(m<L) andb{*’=0 otherwise. So, the
resonances at~ w,/2 are related with the excitation of the
odd phonon modes. Combining Eq41) and (14) we find
that the allowed wave number for the partial differential
equation(PDE) (1) with FBC are

_(n—1)7'r

K, 3 , n=12,...N, n<L, (15

where the oddeven values ofn are related with the odd
(even phonon modes. Moreover, these results are consistent
with the numerical findings of Refl].

[ll. INTERPRETATION OF THE RESULTS

In analyzing the results of the perturbation theory, we
observe that to firsfinear order, the effect of the ac driving
in exciting the phonon modes is independent of the nonlinear
wave (the kink) but rather related to the “integrated
strength” of the mode that is to be excitgdotice the term
N, in Eq. (6)]. Consequently, as odd modes bear vanishing
integrated strength, fob~w,, only resonances with the
even phonon modes can be identifigdl leading order On
the contrary, higher order resonances involve the nonlinear
wave[notice the terniN, in Eq. (6)]. In the latter case, as we
observe in Figs. 2 and 3, the excitation of modes that respect
the symmetry of the nonlinear wave becomes preferrential
(as we would expect on symmetry groupdslence forés
~ wy/2, the excitation of phonon modes that have the same
parity as the wave will be favored. In Fig. 1 we show the first
odd and the first even phonon mode eigenfunction profiles,
while in Figs. 2 and 3 we show their respective effects on the
motion of the kink. Notice that the former results in a breath-
ing type oscillation of the whole kink profile, while the latter
affects only the steady states on the background of which the
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FIG. 2. Effect of the odd phonon modes on the sG kink: with a  FIG. 3. Effect of the even phonon modes on the sG kink: with a
solid line we represent the static kintég, which is an exact solu- solid line we represent the static kinggy, which is an exact solu-
tion of the sG equation. Under the effect of the first odd phonortion of the sG equation. Under the effect of the first even phonon
mode [linear superposition of the sG kink and the function mode[linear superposition of the sG kink and the functayf,(x),
b,;G,(x), with b;=*+0.5, see Eq(2)], the sG kink oscillates be- with a,==*1, see Eq(2)], the sG kink oscillates between the two
tween the two profiles represented by the dashed and dash-dottedofiles represented by the dashed and dash-dotted lines.
fines. frequenciesé~ w,/2. These modes of odd parity are ener-
kink “lives.” The latter observation justifies the remarks 9etically favored as they respect the symmetry of the kink. It
above, as the first order excitatigat 6~ w,) of the even was also shown that the even phonon mo(_cdnészven spatial
modes is related only to the steady statesrelated to the Iparlty) can be ex0|ted“at driving frequenciés- wy. So,”at
kink), while the second order excitation of the odd mogas east in this problem _not al phonons are equwalent: We
5~ w/2) is predominantly related to the kirikather than to should _remark that this phe_nomenon is not only re_str!cted to
the a;if[ead gtataasNotice X{hat we can extend the obtained the action of the ac force in the sG system, but is, in fact,
results by%ncluding the effect of damping in the system. It is 10re general: Indeed, taking=0 and &= /2 in Eqs.(7)

' and(8), one can show that the nonequivalence of the phonon

natural to take into account the dissipative effects in the rerodes also arises when the system is driven by a dc field or

alistic cases OT mteyest In appllgatlons. Fur;hermore It .ShOU| ven if we start from a distorted kink in the numerical simu-
be noted that in this way the divergences in the solutions oations[g]

the Eqs(7) and(12) are avoided and the perturbation theory
is valid even whers~ Wy ,wk/2. ACKNOWLEDGMENTS
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